Machine Learning A-Z™: Hands-On Python & R In Data
  • Introduction
  • Introduction
    • Introduction
  • Section 1: Welcome to the course!
    • 1. Applications of Machine Learning
    • 2. Why Machine Learning is the Future
    • 3. Important notes, tips & tricks for this course
    • 4. Installing Python and Anaconda (Mac, Linux & Windows)
    • 5. Update: Recommended Anaconda Version
    • 6. Installing R and R Studio (Mac, Linux & Windows)
    • 7. BONUS: Meet your instructors
  • Section 2: Part 1 Data Preprocessing
    • 8. Welcome to Part 1 - Data Preprocessing
    • 9. Get the dataset
    • 10. Importing the Libraries
    • 11. Importing the Dataset
    • 12. For Python learners, summary of Object-oriented programming: classes & objects
    • 13. Missing Data
    • 14. Categorical Data
    • 15. WARNING - Update
    • 16. Splitting the Dataset into the Training set and Test set
    • 17. Feature Scaling
    • 18. And here is our Data Preprocessing Template!
    • Quiz 1: Data Preprocessing
  • Section 3: Part 2 Regression
    • 19. Welcome to Part 2 - Regression
  • Section 4: Simple Linear Regression
    • 20. How to get the dataset
    • 21. Dataset + Business Problem Description
    • 22. Simple Linear Regression Intuition - Step 1
    • 23. Simple Linear Regression Intuition - Step 2
Powered by GitBook
On this page
  1. Section 3: Part 2 Regression

19. Welcome to Part 2 - Regression

Instructor Notes

Welcome to Part 2 - Regression!

Regression models (both linear and non-linear) are used for predicting a real value, like salary for example. If your independent variable is time, then you are forecasting future values, otherwise your model is predicting present but unknown values. Regression technique vary from Linear Regression to SVR and Random Forests Regression.

In this part, you will understand and learn how to implement the following Machine Learning Regression models:

  1. Simple Linear Regression

  2. Multiple Linear Regression

  3. Polynomial Regression

  4. Support Vector for Regression (SVR)

  5. Decision Tree Classification

  6. Random Forest Classification

Enjoy Machine Learning!

PreviousQuiz 1: Data PreprocessingNext20. How to get the dataset

Last updated 6 years ago